Skip to main content

NVIDIA Isaac Sim Overview

Isaac Sim is NVIDIA's photorealistic robotics simulator built on the Omniverse platform. It provides GPU-accelerated physics, ray-traced rendering, and AI-ready synthetic data generation for training and testing robots.

Why Isaac Sim?

Isaac Sim goes beyond traditional simulators like Gazebo by offering:

  1. Photorealistic Rendering: Ray-traced graphics for realistic vision training
  2. GPU Acceleration: Physics runs 10-100x faster than CPU-based simulators
  3. Synthetic Data Generation: Create labeled datasets for machine learning
  4. Digital Twin Support: Seamlessly transition from simulation to real robots
  5. AI Integration: Built-in support for PyTorch, TensorFlow, NVIDIA TAO

Key Concepts

1. Omniverse Platform

Isaac Sim runs on NVIDIA Omniverse, a collaboration platform for 3D workflows:

  • USD (Universal Scene Description): Industry-standard 3D scene format
  • PhysX: NVIDIA's GPU-accelerated physics engine
  • RTX Rendering: Real-time ray tracing for realistic visuals
  • Connectors: Integrates with Blender, Maya, Unreal Engine, ROS 2

2. Synthetic Data Generation (SDG)

Generate unlimited labeled training data for computer vision:

import omni.replicator.core as rep

# Create a camera for data collection
camera = rep.create.camera()

# Randomize object positions
with rep.trigger.on_frame(num_frames=1000):
with rep.create.group([rep.get.prims(path_pattern="/World/Objects/*")]):
rep.modify.pose(
position=rep.distribution.uniform((-2, 0, 0), (2, 0, 2)),
rotation=rep.distribution.uniform((0, -180, 0), (0, 180, 0))
)

# Set up annotation writers (bounding boxes, segmentation)
rep.writers.get("BasicWriter").initialize(
output_dir="synthetic_data",
rgb=True,
bounding_box_2d_tight=True,
semantic_segmentation=True
)

# Run the simulation
rep.orchestrator.run()

Output: Thousands of labeled images with:

  • RGB images
  • Depth maps
  • Semantic segmentation masks
  • 2D/3D bounding boxes
  • Instance segmentation

3. Robot Importers

Import robots from common formats:

from omni.isaac.core.utils.stage import add_reference_to_stage

# Import URDF robot
add_reference_to_stage(
usd_path="/World/Robot",
prim_path="/path/to/robot.urdf"
)

# Import USD robot (preferred for Isaac Sim)
add_reference_to_stage(
usd_path="/World/Robot",
prim_path="/path/to/robot.usd"
)

4. GPU-Accelerated Physics

Isaac Sim uses NVIDIA PhysX 5 for realistic, fast physics:

FeatureTraditional CPUIsaac Sim GPU
Rigid body simulation100 objects10,000+ objects
Contact pointsLimitedMillions
Physics timestep1-10 ms0.01-0.1 ms
Parallel scenes1 scene100+ scenes

Getting Started with Isaac Sim

Installation

# Download from NVIDIA (requires free account)
# https://developer.nvidia.com/isaac-sim

# Install via Omniverse Launcher
# Select Isaac Sim → Install

# Launch Isaac Sim
~/.local/share/ov/pkg/isaac_sim-*/isaac-sim.sh

Basic Scene Setup

from omni.isaac.kit import SimulationApp

# Start the simulator
simulation_app = SimulationApp({"headless": False})

from omni.isaac.core import World
from omni.isaac.core.objects import DynamicCuboid

# Create a physics world
world = World(stage_units_in_meters=1.0)

# Add a ground plane
world.scene.add_default_ground_plane()

# Add a dynamic cube
cube = world.scene.add(
DynamicCuboid(
prim_path="/World/Cube",
name="cube",
position=[0, 0, 1.0],
size=0.5,
color=[1, 0, 0] # Red
)
)

# Reset the simulation
world.reset()

# Run simulation loop
for i in range(1000):
world.step(render=True)
if i % 100 == 0:
print(f"Cube position: {cube.get_world_pose()[0]}")

# Cleanup
simulation_app.close()

Common Use Cases

1. Navigation Testing

Test autonomous navigation with realistic environments:

from omni.isaac.wheeled_robots.robots import WheeledRobot
from omni.isaac.core.utils.nucleus import get_assets_root_path

# Load warehouse environment
assets_root = get_assets_root_path()
world.scene.add(prim_path=f"{assets_root}/Isaac/Environments/Simple_Warehouse/warehouse.usd")

# Spawn robot
robot = WheeledRobot(
prim_path="/World/Robot",
name="mobile_robot",
position=[0, 0, 0.1]
)

2. Manipulation Training

Train robotic arms with randomized objects:

from omni.isaac.franka import Franka

# Add Franka Panda arm
franka = world.scene.add(
Franka(
prim_path="/World/Franka",
name="franka",
position=[0, 0, 0]
)
)

# Randomize object properties for RL training
with rep.trigger.on_frame(num_frames=10000):
with rep.create.group([rep.get.prims(path_pattern="/World/Objects/*")]):
rep.randomizer.color(
colors=rep.distribution.uniform((0, 0, 0), (1, 1, 1))
)
rep.randomizer.texture(
textures=rep.distribution.choice(["wood", "metal", "plastic"])
)

3. Multi-Robot Coordination

Simulate swarms with GPU acceleration:

# Spawn 100 robots in parallel
for i in range(100):
robot = WheeledRobot(
prim_path=f"/World/Robot_{i}",
name=f"robot_{i}",
position=[i % 10, i // 10, 0.1]
)
world.scene.add(robot)

Isaac Sim vs Gazebo

FeatureGazeboIsaac Sim
PhysicsCPU (ODE)GPU (PhysX)
RenderingOpenGLRTX Ray Tracing
Performance1x real-time10-100x real-time
Synthetic DataLimitedBuilt-in SDG
CostFree, Open SourceFree (NVIDIA account)
Learning CurveModerateSteep

Best Practices

  1. Use GPU: Requires NVIDIA RTX GPU (RTX 2060 or better)
  2. Start Simple: Begin with basic scenes before adding complexity
  3. Leverage Assets: Use pre-built environments from NVIDIA Nucleus
  4. Profile Performance: Monitor FPS and physics timestep
  5. USD Format: Prefer USD over URDF for better performance

System Requirements

  • GPU: NVIDIA RTX 2060 or higher (RTX 3090+ recommended)
  • RAM: 32 GB minimum (64 GB recommended)
  • Storage: 50 GB for installation
  • OS: Ubuntu 20.04/22.04 or Windows 10/11
  • Driver: NVIDIA Driver 525+ with Vulkan support

Try It Yourself

Ask the chatbot:

  • "How do I generate synthetic training data in Isaac Sim?"
  • "What's the difference between USD and URDF formats?"
  • "Can I run Isaac Sim without a GPU?"